
U-235 SoundEngine manual v0.20

 Page 1

U-235 Sound Engine

User Manual

U-235 SoundEngine manual v0.20

 Page 2

Contents
Introduction .. 3

Licensing .. 3

Features .. 3

Included Files .. 4

Building the Demo .. 5

Prerequisites ... 5

Using Make ... 5

By hand ... 5

Demonstration controls .. 6

Using the sound engine .. 7

Overview ... 7

Detail ... 7

Required Files .. 7

Initialisation ... 8

Sample Bank Definition ... 9

Module Initialisation ... 10

Module Playback ... 10

Module Position Adjustment .. 11

Sample Playback ... 12

Random Number Generator ... 14

Appendices .. 15

Sound Engine commands .. 15

Tracker Module Effects support ... 16

Credits ... 17

Greetings and thanks .. 17

U-235 SoundEngine manual v0.20

 Page 3

Introduction
The U-235 SoundEngine(tm) is a software package intended for use by developers on the Atari

Jaguar 64bit Multimedia System. It provides multi-voice sample playback using entirely DSP-based

code; this frees up the other system CPUs for your game. Technology has been built into the

SoundEngine(tm) to simplify its use, whilst providing flexibility and minimizing main system bus

access.

Licensing

Definitions

• “The Software” refers to the U-235 SoundEngine, which is provided as an assembled binary

object for use on the Atari Jaguar 64bit Multimedia System.

• “Raptor” refers to the Raptor Game Engine by Reboot (http://reboot.atari.org).

• “Author(s)” refers to group U-235 (http://www.u-235.co.uk).

Licence

This software is provided free of charge to anyone and everyone. U-235 accepts no responsibility for

damage or loss by its use or misuse. U-235 grants you the right to use this software within your own

works provided that:

• Clear identification of the use of this software is included within your own works, either by

use of one of the approved logos provided, or textually.

• The identification of the use of this software must appear within the digital works in a

manner that is visible to the end user and upon any physical packaging.

• The software may not be reverse engineered or modified without prior consent of the

author(s).

• No source code forming any part of The Software is to be distributed without explicit

permission from the author(s).

In other works

The software also forms part of Raptor, which is a licensed external work which has been approved

by the authors to include and distribute the software under the terms of Raptor’s licence agreement.

Features

• 8 voices with independent frequency playback

• 16-bit Random number generator

• Per voice volume control

• Music and SFX master mix volumes

• Mono or Stereo playback for music or sound effects

• Support for 4-channel Tracker Modules

• Entirely DSP based RISC core

• High fidelity sample playback

• Kudos Ware Licensing model

U-235 SoundEngine manual v0.20

 Page 4

Included Files

Contained within the SoundEngine package there are the following files

Name Required

by SE

Description

Manual.pdf This file

Licence.txt A text-based version of the U-235 Sound Engine licence

Alf.mod An example sound tracker file. Written by Trash

Changelog.txt Details of changes that have occurred to the U-235 SoundEngine

package
DSP.OBJ Yes The binary object file that is the SoundEngine itself

JAGUAR.INC Atari’s Jaguar header file unmodified. This is included to aid in

assembling the example code.
Joypad.s Simple code to read the joypad in port 1 of the Jaguar

Main.s Source code for the main body of the demonstration code.

MAKEFILE A Makefile to build the demonstration code using standard Atari

build tools (MADMAC and ALN)
ORCH.SAM An 8bit signed mono sample of an Orchestral Hit, used within the

demonstration code.
Sequence.s Source code for the module initialisation routines as used by the

SoundEngine

This is now included within the DSP.OBJ file.

Setup.s Simple setup routines for initialising the Atari Jaguar hardware

U235se.inc Yes Include file containing equates and extern directives for variables

and flags within the Sound Engine

Vbi.s Source code for the VBI handler routines.

Contained within the subdirectory “logos” are the official U-235 SoundEngine graphics for use within

your project and on its packaging.

U-235 SoundEngine manual v0.20

 Page 5

Building the Demo
To help illustrate the operation of the U-235 SoundEngine a demonstration program is included.

This will play the example module “alf.mod” and also allow for playing the sample “orch.sam” via

various sound voices. Before this can be built however, additional tools are required that are not

included within this package.

Prerequisites

Assembler A suitable Jaguar assembler; the whole U-235 SoundEngine has been built with Atari’s

own MADMAC assembler.

Linker As SoundEngine is provided as a pre-assembled object, it is required that it must be

linked into any project that intends to use it. U-235 makes use of Atari’s own ALN

linker.

Make This is optional but highly recommended for any project that is complex. The use of

make will greatly simplify the building process of the demonstration and also of any

other project if used correctly.

Using Make

A makefile is already included with the demonstration source; it assumes the use of Atari’s own tools

(MAC and ALN) and that these are located within the search path. If this is the case, running make

should yield a complete working MAIN.COF file that can be loaded into Jaguar memory.

By hand

It is highly recommended that make is used. To assemble the demonstration without make follow

these steps. (It is assumed that MADMAC and ALN are being used and are in the systems search

path.

First assemble the main.s source file

Mac –fb –s main.s

This will produce the file main.o this object file now needs linking before it can be executed

Aln –e –g –w –rq –o main –a 4000 x x main.o dsp.obj

Will combine the two object files main.o and dsp.obj and resolve all labels within the object

files producing a linked binary main.cof.

U-235 SoundEngine manual v0.20

 Page 6

Demonstration controls

Once loaded into an Atari Jaguar the demo will start playing the module. The screen will be blank. It

is possible to interact with the demo using the keypad on the controller plugged into port 1 of the

Jaguar. The controls are:

Button Function

1 Start module playback

2 Stop module playback

3 Play sample on voice 4 at note 32

4 Play sample on voice 5 at note 37

5 Play sample on voice 6 at note 42

6 Play sample on voice 7 at note 47

7 Play sample on voices 0-7 at note 25 simultaneously

U-235 SoundEngine manual v0.20

 Page 7

Using the sound engine
This section covers the process of utilising the sound engine within your own projects. The detail

section will cover each aspect in detail.

Overview

Before the sound engine can be used it must first be loaded into the DSP RAM, the DSP must then be

started with its program counter pointing at the start of DSP RAM. The sound engine will initialise

the DSP timers and start waiting for jobs immediately.

With the engine running if there are any external (non-module) based samples that are to be used

the pointer to the sample definition table should be set.

If a module is to be played it must first be processed by the modinit function (68K code at the time

of writing), which will initialise the appropriate variables within the sound engine. Once the module

has been initialised the module playback can be started by setting the playback flag appropriately.

Command lists can now be passed to the sound engine.

Detail

Throughout this section the example code provided with the sound engine will be used as the code

base for the examples presented here. This should provide a useful reference.

Throughout this document it is assumed that the JAGUAR.INC file is included in the project for the

purposes of easy to read equates to Jaguar hardware addresses etc.

Required Files

There are certain key files that are needed to use the sound engine. Some will need to be included

within the project’s source and assembled whilst the main sound engine itself needs to be linked

into the project.

U235se.inc This file provides equates for configuration parameters and also .EXTERN directives

for variables and labels within the Sound Engine itself. It should be included into a

project in the same was as JAGUAR.INC is included.

DSP.OBJ This is the actual DSP binary code that forms the sound engine. This needs to be

linked into the project via the linker (ALN for example).

U-235 SoundEngine manual v0.20

 Page 8

Initialisation

Before the sound engine can be used, the DSP must be made ready, the code copied into the DSP

and the DSP started.

The sound engine can be copied into the DSP RAM with the following simple loop:

 move.w #2048,d0

 lea dspcode,a0

 move.l #D_RAM,a1

.loop:

 move.l (a0)+,(a1)+

 dbra.w d0,.loop

This code will copy 8KB of data into the DSP RAM. It’s not exactly refined but keeps things simple ☺

The Sound Engine defaults the master playback rate to 16kHz, if in your project you wish to use a

different playback rate the rate and associated period can be changed. These parameters must be

set before the DSP is initialised. The u235se.inc file includes a selection of parameters for this

purpose, the sample code sets up the Sound Engine for 24kHz playback.

 move.l #U235SE_24KHZ,U235SE_playback_rate

 move.l #U235SE_24KHZ_PERIOD, U235SE_playback_period

As we are going to be using sound, it is a good idea to enable the sound output with the following:

move.w #$100,JOYSTICK

All the code is now loaded in the DSP, so it can be started. The start-up first sets the DSP PC to the

start of DSP RAM which will cause the sound engine initialisation code to run and setup the

programmable timers within the DSP, and start waiting for work to do. Once running the sound

engine will not access main RAM within the Jaguar until it is needed for a task.

move.l #D_RAM,D_PC

move.l #RISCGO,D_CTRL

The sound engine is now running, but has not yet been initialised with locations of sample banks etc.

U-235 SoundEngine manual v0.20

 Page 9

Sample Bank Definition

The Sound Engine works with sample banks; these are simple data structures within RAM that

contain all the information needed by the Sound Engine to play the various samples. It is possible to

have as many sample banks as desired, the module player makes use of its own internal sample bank

for the modules samples, if so desired this bank can be accessed via the label

U235SE_sample_tbl, however it should be noted that the default playback frequency will not

be set so a frequency must always be provided. This also simplifies the playback of a sample as it

can simply be referred to by number. Samples are numbered starting at 0.

IMPORTANT: All sample banks MUST be double phrase aligned (DPHRASE)

The sample table is a simple data structure which, in the example code, is as follows:

.DPHRASE

; Sample #1

 dc.l sample1 ; base address of sample in RAM

 dc.l sample1_end ; End of sample

 dc.l 0 ; RBASE

 dc.l 0 ; REND

 dc.l 64 ; <null word> | Fine tune | Volume

 dc.l 2990 ; Default play freq (only used in SFX)

 ; 24 bytes per sample. 744 bytes total

The elements of this data structure are:

BASE The location in RAM or ROM of the sample to be played. All samples must be word-

aligned.

END This is the address in memory of the end of the sample. Note: The end MUST be greater

than the sample base or the sound engine will simply assume it has already reached the

end of the sample and play nothing.

RBASE Repeat Offset address - this address is only for use for samples that loop. If a sample is

to loop then the RBASE value is the address in memory of where the sample loop should

start between BASE and END. This is an absolute address and not a relative one.

REND Repeat End address - once a sample has looped past its original end and is in a looping

state, the value in REND will be used to determine the end of the sample, at which point

it will repeat again until stopped by another means (voice stop or new sample on that

voice).

SETTINGS Each sample has a default playback volume and, if being used via note, calls a fine tune

setting. These two values are defined in this long. The lowest byte defines the volume,

values of 0-64 are permitted, and the byte before this defines the fine tune value (0-15)

FREQ The default playback frequency for the sample in Hertz (Hz)

Before a sample is played from the sample bank the Sound Engine must be told to use the specific

sample bank. This is achieved by using the “Set Sample Bank” Sound Engine command within the

playlist. A sample bank must always be defined as there is no guarantee that one has been set.

U-235 SoundEngine manual v0.20

 Page 10

Module Initialisation

Before a module can be played it must first be initialised. This requires that the variable

U235SE_moduleaddr is set to point to the address in RAM or ROM that the module exists in.

Note: Modules must be long aligned.

With this variable set, the initialisation routine can be called

jsr modinit

The module is now ready to play.

Module Playback

Playback of an initialised module is extremely simple. The variable within the sound engine to

control module playback takes 1 of 3 values or for readability using one of the predefined equates.

Value Equate Definition

0 U235SE_NOMOD No playback of module, samples initiated by the module will

continue to play.

1 U235SE_PLAYMONO Play module mono. All 4 voices of the module will play from

both left and right channels.

2 U235SE_PLAYSTEREO Play module stereo. Two voices of the module will play

through each channel. This is how the module would sound on

an Amiga.

This can be seen in the example code

move.l #1, U235SE_playmod

; or

move.l #U235SE_PLAYMONO, U235SE_playmod

IMPORTANT: Remember, whenever writing to DSP RAM with the 68k, ALWAYS write 32bit longs or

strange things can happen!

U-235 SoundEngine manual v0.20

 Page 11

Module Position Adjustment

If it is required to reset a module back to the start (perhaps playing a new module), or adjust other

playback attributes of a module, it is possible to manually edit the variables used by the module

player. At present there is no API call to do this.

It is recommended that these variables are not adjusted whilst a module is actually playing, the

changes could be ignored or cause the player to do undesirable things (like consume all the available

bus bandwidth).

To start a new module, it is recommended that any playing module is stopped, then prior to running

modinit that 0 is written to the first 4 longs at the address U235SE_modregdump.

The following table describes the use of each of these longs, the hex value is the offset from

U235SE_modregdump.

Offset Purpose Description

$0 Ticks The number of timer ticks that have passed. Used to calculate when to advance

a division

$4 Count The number of ticks per division. This is also pointed to by the variable
U235SE_modspeed

$8 Div The current pattern division

$C Position The current position within the module.

U-235 SoundEngine manual v0.20

 Page 12

Sample Playback

Playback of individual samples with the sound engine works in a way similar to that of the Jaguar’s

object processor. A list of instructions are created; the sound engine is then pointed at this list and

processes the instructions.

A sound engine instruction is a single 32bit long; this is built up of four parts.

32 bit long

Data Section Y (16bit) Data Section X (8bit)
Voice #

(4bit)

Command

(4 bit)

The use of the data sections is command dependant (see the table in the Sound Engine commands

section of this manual)

After the list of commands, there must be a terminator. This is a long word containing only ‘0’ (zero)

Constructing an entry in a list can be achieved with:

lea playlist,a0

move.l #sample_bank,d0 ; Put address of sample bank in d0

and.l #$fffffff0,d0 ; mask off the low nibble

or.l #$b,d0 ; add Set Sample Bank instruction

move.l d0,(a0)+ ; Write Set bank to playlist

move.l #$11940054,(a0)+

move.l #0,(a0)

In this example the first command sets the sample bank to be used for following instructions within

the play list, the next command ($11940044) instructs the sound engine to play sample 0 on voice

5 at frequency 4500Hz ($1194 is 4500 in hex), this is command 4.

U-235 SoundEngine manual v0.20

 Page 13

If there are multiple commands to be issued then they are added to the list before it is sent:

lea playlist,a0

move.l #sample_bank,d0 ; Put address of sample bank in d0

and.l #$fffffff0,d0 ; mask off the low nibble

or.l #$b,d0 ; add Set Sample Bank instruction

move.l d0,(a0)+ ; Write Set bank to playlist

move.l #$11940004,(a0)+

move.l #$11940014,(a0)+

move.l #$11940024,(a0)+

move.l #$11940034,(a0)+

move.l #$11940044,(a0)+

move.l #$11940054,(a0)+

move.l #$11940064,(a0)+

move.l #$11940074,(a0)+

move.l #0,(a0)

Here the sample will be played on all 8 voices simultaneously.

Simply creating the list will not cause the sound engine to act on the commands. Activating the list

of commands is achieved by passing the address of the (terminated) list to the sound engine.

lea U235SE_sfxplaylist_ptr,a1

move.l #playlist,d0

 move.l d0,(a1)

As soon as the playlist address is set, the sound engine will process the list. The sound engine will

not modify the list in anyway (unlike the Jaguar’s object processor), so a list can be reused if needed.

U-235 SoundEngine manual v0.20

 Page 14

Random Number Generator

As of version 0.20 the Sound Engine now features a 16-bit pseudo random number generator (RNG).

If the Sound Engine is loaded and the DSP running the RNG will continue to generate random

numbers. This has no impact on the Sound Engine or module playback and runs in the free time the

DSP has between processing sample data.

To access the output from the RNG simply perform a long read from the label U235SE_rng , for

example:

move.l U235SE_rng,d0

Will populate d0 with a 16-bit random number. Note: a long read is required due to the architecture

of the Jaguar bus, also the 17th bit will also toggle, so it could be considered to be a 17-bit random

number should that be of use.

U-235 SoundEngine manual v0.20

 Page 15

Appendices

Sound Engine commands

All commands to the sound engine are 32bit long. They are composed as per the following table:

32 bit long

Data Section Y (16bit) Data Section X (8bit)
Voice #

(4bit)

Command

(4 bit)

The following table lists all the commands that are available, and a brief description of their

function.

C
o

m
m

a
n

d
 #

Data Y Data X Name Description

0 - - Terminator Indicates the end of the command list.

This is required at the end of every list.

1 - - Stop Voice Ceases all sample playback on the

specified voice.

2 - Sample number Play

Sample

Plays a sample on the specified voice at

the default playback frequency (FREQ) for

that sample.

3 Volume adjust

amount, signed

(Optional)

Volume Set Volume Either set or adjust the volume of the

specified voice.

4 Playback

Frequency in Hz

Sample number Play

Sample @

frequency

Play a sample but at the playback

frequency specified in the command.

5 New playback

rate

Volume ($FF =

no change)

Modify

Channel

Make a change to a voice’s settings,

change the playback rate and optionally

volume.

6 Unused

7 New playback

frequency in Hz

- Adjust

playback

rate

Change the playback frequency of the

specified voice.

8 - - Reset

Volume

Restore the volume of channel to the

currently playing sample’s default volume.

9 Offset of sample Play from

offset

Play sample on voice but start the sample

playback at the given offset.

10 Unused

11 DPhrase aligned address of sample

bank to use for following

commands

Set Sample

Bank

Sets the sample bank that the Sound

Engine is to use, only parameter is the

command nibble, all other bits are for the

address as this is a global command and

not voice specific.

U-235 SoundEngine manual v0.20

 Page 16

Tracker Module Effects support

The following table details each of the sound tracker effects and their current level of support within the

sound engine.

Effect

Effect

HEX

Name Status Notes

0 0 Arpeggio Un-Supported

1 1 Slide up Supported

2 2 Slide down Supported

3 3 Slide to note Supported

4 4 Vibrato Supported

5 5 Slide to note & Volume

slide

Un-Supported

6 6 Vibrato & Volume slide Supported

7 7 Tremolo Un-Supported

9 9 Set sample offset Supported

10 A Volume Slide Supported

11 B Position Jump Supported

12 C Set Volume Supported

13 D Pattern Break Supported

14 0 E0 Set filter Un-Supported This is likely to never be implemented

14 1 E1 Fine slide up Un-Supported

14 2 E2 Fine slide down Un-Supported

14 3 E3 Set glissando Un-Supported

14 4 E4 Set vibrato waveform Un-Supported

14 5 E5 Set finetune value Un-Supported

14 6 E6 Loop Pattern Un-Supported

14 7 E7 Set Tremolo waveform Un-Supported

14 9 E9 Retrigger Sample Un-Supported

14 10 EA Fine volume slide up Supported

14 11 EB Fine volume slide down Supported

14 12 EC Cut Sample Un-Supported

14 13 ED Delay sample Un-Supported

14 14 EE Delay pattern Un-Supported

14 15 EF Invert Loop Un-Supported

15 F Set speed Supported

NB: Unless otherwise stated “Un-Supported” effects will be implemented over time.

U-235 SoundEngine manual v0.20

 Page 17

Credits
Code & Docs: LinkoVitch

Testing: sh3

Additional Testing: Cyrano Jones, Matmook

Logo artwork: sh3

Proof Reading: Mug UK, GazTee, Cyrano Jones, sh3

Greetings and thanks
In no special order:

U-235

GazTee & sh3 (thanks guys, without you chaps this wouldn’t be possible -Link)

Reboot

Special hellos to Cyrano Jones, RemoWilliams, Sauron, MSG & ggn

Jagware

 Special thanks to ZeroSquare for all the Jaguar help, mucho chocs coming your way

 SCPCD, Matmook

AtariAge, Shamus, 505, Tyr of the Arcana, OMF, GroovyBee, AtariOwl, StarCat, Thorn, BMX, Mr & Mrs Atari,

Nick Harlow, Stone, Partycle, Mug UK, DrTypo

