U-235 Sound Engine

S O U N D

L)-2315

ENGINE

User Manual

PPPPP

Contents

T} o e [V Tt d o] o PSP P OO PO PR ORISRV SRRPON 3
[T =] o 1Y 1 = PSSR 3
FEATUIES et e e st e e e e e e s e e e s et e e e e r e e e e e r e e e e s nree e e nnene e 3
ool 0o 1=t I o1 PO T ST UURTUPPTOURRUPPO 4
2 TUT] o Tl g =ad o TR D T<Y o o Vo PSR 5
=T = To UL LT UPPPPPPPPPR 5
USING IMIGKE ..veeeeiiiee ettt ettt e e et e e e et e e e e e bteeessabaeeesantaeaeeesastaeesansaeeesantaeeesassaeasaseneenns 5
2V 0T o Vo SRS 5
DEMONSErAtioN CONTIOIS ...ciiiiiieiiiite ettt e e st e e bt e e sne e e smbeesareeenneeennee 6
USING the SOUNT ENEINE ...uviiiieeeeeeeee et e e e e e et e e e e e e et ab e ae e e e e e e ntstaeeeeeeesannsraneeaanas 7
OVEIVIBW ..ttt b e s a e e s s et e s e s s b b e e e s b b e e e s b b s e s s bba e e s sabbaeesaanas 7
D= 1| PP PP P VPP PRI 7
(20T 01T =T N o = USRS 7

T T 11T 14 oo T T TP UPTP RPN 8
External Sample INitialisSatioN. ... e e e e e e 9
Module INItIAISATION c...eeiietie ettt ettt sb e sb e s e s 10

Y T o (011 o F= 1V o - ol RN 10
SAMPIE PIAYDACK oo e et e e e e e bae e e e naraeas 11
SoUNd ENZINE COMMANGS.......uuiiiiiieececcciiieee e e e e e ecttrer e e e e e e e reeeeeeesesatateeeeaaaeeesesantesseeaessasassssnsesaasesnnns 13
N To] =l [oTo] U] o IR 1 o] [P 14
Tracker Module EffeCtSs SUPPOITuiiiiii et e e eee e e e e e et a e e e e e e e e e nnraeeeeeas 15
(O To 1| TPV RO PRPR 16
Greetings aNd thanKsoi i e e e et e e e e et e e e e aba e e e s ar e e e e rraeeeanraaes 16

U-235 SoundEngine manual v0.16
Page 2

Introduction

The U-235 SoundEngine(tm) is a software package intended for use by developers on the Atari
Jaguar 64bit Multimedia System. It provides multi-voice sample playback using entirely DSP-based
code; this frees up the other system CPUs for your game. Technology has been built into the
SoundEngine(tm) to simplify its use, whilst providing flexibility and minimizing main system bus
access.

Licensing
Definitions

* “The Software” refers to the U-235 SoundEngine, which is provided as an assembled binary
object for use on the Atari Jaguar 64bit Multimedia System.

e “Raptor” refers to the Raptor Game Engine by Reboot (http://reboot.atari.org).

e “Author(s)” refers to group U-235 (http://www.u-235.co.uk).

Licence

This software is provided free of charge to anyone and everyone. U-235 accepts no responsibility for
damage or loss by its use or misuse. U-235 grants you the right to use this software within your own
works provided that:

e (Clear identification of the use of this software is included within your own works, either by
use of one of the approved logos provided, or textually.

* The identification of the use of this software must appear within the digital works in a
manner that is visible to the end user and upon any physical packaging.

e The software may not be reverse engineered or modified without prior consent of the
author(s).

¢ No source code forming any part of The Software is to be distributed without explicit
permission from the author(s).

In other works

The software also forms part of Raptor, which is a licensed external work which has been approved
by the authors to include and distribute the software under the terms of Raptor’s licence agreement.

Features
e 8 voices with independent frequency playback
® Per voice volume control
® Music and SFX master mix volumes
® Mono or Stereo playback for music or sound effects
e Support for 4-channel Tracker Modules
e Entirely DSP based RISC core
® High fidelity sample playback
e Kudos Ware Licensing model

U-235 SoundEngine manual v0.16
Page 3

Included Files

Contained within the SoundEngine package there are the following files

Name

Description

Manual.pdf

This file

Licence.txt

A text-based version of the U-235 Sound Engine licence

Alf.mod

An example sound tracker file. Written by Trash

Changelog.txt

Details of changes that have occurred to the U-235 SoundEngine package

DSP.O

The binary object file that is the SoundEngine itself

JAGUAR. INC

Atari’s Jaguar header file unmodified. This is included to aid in assembling the
example code.

Joypad.s Simple code to read the joypad in port 1 of the Jaguar

Main.s Source code for the main body of the demonstration code.

MAKEFILE A Makefile to build the demonstration code using standard Atari build tools
(MADMAC and ALN)

ORCH.SAM An 8bit signed mono sample of an Orchestral Hit, used within the demonstration

code.

PERIOD_8.S

Period timing table for 8kHz, used by the SoundEngine

PERIOD16.S Period timing table for 16kHz, used by the SoundEngine

PERIOD24.S Period timing table for 24kHz, used by the SoundEngine

PERIOD32.S Period timing table for 32kHz, used by the SoundEngine

Sequence.s Source code for the module initialisation routines as used by the SoundEngine
Setup.s Simple setup routines for initialising the Atari Jaguar hardware

Vbi.s Source code for the VBI handler routines.

Contained within the subdirectory “logos” are the official U-235 SoundEngine graphics for use within

your project and on its packaging.

U-235 SoundEngine manual v0.16

Page 4

Building the Demo

To help illustrate the operation of the U-235 SoundEngine a demonstration program is included.
This will play the example module “alf.mod” and also allow for playing the sample “orch. sam” via
various sound voices. Before this can be built however, additional tools are required that are not
included within this package.

Prerequisites

Assembler | A suitable Jaguar assembler; the whole U-235 SoundEngine has been built with Atari’s
own MADMAC assembler.

Linker As SoundEngine is provided as a pre-assembled object, it is required that it must be
linked into any project that intends to use it. U-235 makes use of Atari’s own ALN
linker.

Make This is optional but highly recommended for any project that is complex. The use of

make will greatly simplify the building process of the demonstration and also of any
other project if used correctly.

Using Make

A makefile is already included with the demonstration source; it assumes the use of Atari’s own tools
(MAC and ALN) and that these are located within the search path. If this is the case, running make
should yield a complete working MAIN. COF file that can be loaded into Jaguar memory.

By hand

It is highly recommended that make is used. To assemble the demonstration without make follow
these steps. (It is assumed that MADMAC and ALN are being used and are in the systems search
path.

First assemble the main. s source file

Mac -fb -s main.s

This will produce the file main. o this object file now needs linking before it can be executed
Aln -e —g —w -rgq -o main -a 4000 x x main.o dsp.o

Will combine the two object filesmain.o and dsp. o and resolve all labels within the object files
producing a linked binary main. cof.

U-235 SoundEngine manual v0.16
Page 5

Demonstration controls
Once loaded into an Atari Jaguar the demo will start playing the module. The screen will be blank. It

is possible to interact with the demo using the keypad on the controller plugged into port 1 of the

Jaguar. The controls are:

Button

Function

Start module playback

Stop module playback

Play sample on voice 4 at note 32

Play sample on voice 5 at note 37

Play sample on voice 6 at note 42

Play sample on voice 7 at note 47

N {WIN|(F

Play sample on voices 0-7 at note 25 simultaneously

U-235 SoundEngine manual v0.16

Page 6

Using the sound engine
This section covers the process of utilising the sound engine within your own projects. The detail
section will cover each aspect in detail.

Overview

Before the sound engine can be used it must first be loaded into the DSP RAM, the DSP must then be
started with its program counter pointing at the start of DSP RAM. The sound engine will initialise
the DSP timers and start waiting for jobs immediately.

With the engine running if there are any external (non-module) based samples that are to be used
the pointer to the sample definition table should be set.

If a module is to be played it must first be processed by the modinit function (68K code at the time
of writing), which will initialise the appropriate variables within the sound engine. Once the module
has been initialised the module playback can be started by setting the playback flag appropriately.

Command lists can now be passed to the sound engine.

Detail
Throughout this section the example code provided with the sound engine will be used as the code
base for the examples presented here. This should provide a useful reference.

Throughout this document it is assumed that the JAGUAR. INC file is included in the project for the
purposes of easy to read equates to Jaguar hardware addresses etc.

Required Files

There are certain key files that are needed to use the sound engine. Some will need to be included
within the project’s source and assembled whilst the main sound engine itself needs to be linked
into the project.

PERIODxx.S | This file provides a lookup table for translating the playback frequencies used within
tracker modules to values that can be handled by the sound engine. This file must be
included within the project source. The numerical value in the file name indicates
the playback frequency the lookup tables have been computed for - each playback
frequency has different values.

SEQUENCE.S | This file contains the 68000 source code that is used to initialise the sound engine for
the module to be played. It must be included within the project.

DSP.O This is the actual DSP binary code that forms the sound engine. This needs to be
linked into the project via the linker (ALN for example). It actively uses the contents
of the PERIODxx.S file hence the requirement for that file to be included in the
project.

U-235 SoundEngine manual v0.16
Page 7

Initialisation
Before the sound engine can be used, the DSP must be made ready, the code copied into the DSP
and the DSP started.

The sound engine can be copied into the DSP RAM with the following simple loop:

move.w #2048,d0

lea dspcode, a0

move.l #D_RAM, al
.loop:

move.l (al0)+, (al) +

dbra.w d0, .loop

This code will copy 8KB of data into the DSP RAM. It’s not exactly refined but keeps things simple ©

The SoundEngine needs to know where the period lookup table is located, this table also configures
the master playback rate, and this must be set before the DSP is initialised.

.EXTERN U235SE_period_ptr
lea U235SE_period_ptr, a0
move.l #period_table, (al)

period_table is where the PERIODxx. S file has been included within the project.

As we are going to be using sound, it is a good idea to enable the sound output with the following:
move .w #5100, JOYSTICK

All the code is now loaded in the DSP, so it can be started. The start-up first sets the DSP PC to the
start of DSP RAM which will cause the sound engine initialisation code to run and setup the
programmable timers within the DSP, and start waiting for work to do. Once running the sound
engine will not access main RAM within the Jaguar until it is needed for a task.

move.l #D_RAM, D_PC
move.l #RISCGO, D_CTRL

The sound engine is now running, but has not yet been initialised with locations of sample banks etc.

U-235 SoundEngine manual v0.16
Page 8

External Sample Initialisation
Samples not included in the module must be defined in a sample table. This table provides all the

information about the sample in much the same way as a tracker module does; this also simplifies

the playback of a sample as it can simply be referred to by number. Samples not located within the

module (even if no module is loaded) start at number 32 (the first 31 sample slots being reserved for

those contained within a module).

The sample table is a simple data structure which, in the example code, is as follows:

’

Sample #1
dc.l samplel ; base address of sample in RAM
dc.l samplel_end ; End of sample
dc.l O ; ROFF
dc.l 0 ; RLEN
dc.l 64 ; <null word> | Fine tune | Volume
dc.l 2990 ; Default play rate (only used in SFX)

; 24 bytes per sample. 744 bytes total

The elements of this data structure are:

BASE

The location in RAM or ROM of the sample to be played. All samples must be word-
aligned.

END

This is the address in memory of the end of the sample. Note: The end MUST be greater
than the sample base or the sound engine will simply assume it has already reached the
end of the sample and play nothing.

RBASE

Repeat Offset address - this address is only for use for samples that loop. If a sample is
to loop then the ROFF value is the address in memory of where the sample loop should
start between BASE and END. This is an absolute address and not a relative one.

REND

Repeat End address - once a sample has looped past its original end and is in a looping
state, the value in REND will be used to determine the end of the sample, at which point
it will repeat again until stopped by another means (voice stop or new sample on that
voice).

SETTINGS

Each sample has a default playback volume and, if being used via note, calls a fine tune
setting. These two values are defined in this long. The lowest byte defines the volume,
values of 0-64 are permitted, and the byte before this defines the fine tune value (0-15)

PERIOD

The default playback period for the sample. This ‘period’ is actually a ratio value
between the output frequency and the sample playback frequency. It can be computed
with the following formula

f_p * 4096

fm
Where fp is the sample playback frequency and fm is the sound engine’s master
playback frequency.

U-235 SoundEngine manual v0.16

Page 9

With all of the non-module samples defined, the sound engine needs to know the location in
RAM/ROM of this table; this is set by the following code:

.EXTERN U235SE_ptr_sample_bank
lea U235SE_ptr_sample_bank, a0
move.l #sample_bank, (a0)

The non-module sample can now be used via the sound engine.

Module Initialisation

Before a module can be played it must first be initialised. This requires that the variable
moduleaddy is set to point to the address in RAM or ROM that the module exists in. Note:
Modules must be word aligned.

In the example code the address of the module is already set in the sequence. s file at the
variable definition:

moduleaddy: dc.l module

With this variable set, the initialisation routine can be called
jsr modinit

The module is now ready to play.

Module Playback
Playback of an initialised module is extremely simple. The variable within the sound engine to
control module playback takes 1 of 3 values

Value Definition

0 No playback of module, samples initiated by the module will continue to play.
1 Play module mono. All 4 voices of the module will play from both left and right channels.
2 Play module stereo. Two voices of the module will play through each channel. This is how

the module would sound on an Amiga.

This can be seen in the example code
move.l #1, U235SE_playmod

IMPORTANT: Remember, whenever writing to DSP RAM with the 68k, ALWAYS write 32bit longs or
strange things can happen!

U-235 SoundEngine manual v0.16
Page 10

Sample Playback

Playback of individual samples with the sound engine works in a way similar to that of the Jaguar’s
object processor. A list of instructions are created; the sound engine is then pointed at this list and
processes the instructions.

A sound engine instruction is a single 32bit long; this is built up of four parts.

32 bit long

Voice # Command

Data Section Y (16bit) Data Section X (8bit) (4bit) (4 bit)

The use of the data sections is command dependant (see the table in the Sound Engine commands
section of this manual)

After the list of commands, there must be a terminator. This is a long word containing only ‘0’ (zero)

Constructing an entry in a list can be achieved with:

lea playlist, a0
move.l #500202046, (a0) +
move.l #0, (a0)

In this example the command instructs the sound engine to play sample 32 (the 1** non module
sample in the external bank) on voice 4 at note 32, this is command 6.

If there are multiple commands to be issued then they are added to the list before it is sent:

lea playlist, a0
move.l #$192006, (a0) +
move.l #5192016, (al) +
move.l #5192026, (a0) +
move.l #$192036, (al0) +
move.l #5192046, (al) +
move.l #5192056, (a0) +
move.l #$192066, (a0) +
move.l #$192076, (al0) +
move.l #0, (a0)

Here the sample will be played on all 8 voices simultaneously.

U-235 SoundEngine manual v0.16
Page 11

Simply creating the list will not cause the sound engine to act on the commands. Activating the list
of commands is achieved by passing the address of the (terminated) list to the sound engine.

lea U235SE_sfxplaylist_ptr,al
move.l #playlist,doO
move.l do, (al)

As soon as the playlist address is set, the sound engine will process the list. The sound engine will
not modify the list in anyway (unlike the Jaguar’s object processor), so a list can be reused if needed.

U-235 SoundEngine manual v0.16
Page 12

Sound Engine commands
All commands to the sound engine are 32bit long. They are composed as per the following table:

32 bit long

Data Section Y (16bit)

Data Section X (8bit)

Voice #
(4bit)

Command
(4 bit)

The following table lists all the commands that are available, and a brief description of their

function.
o DataY Data X Name Description
3
5
g_
3*
0 - - Terminator | Indicates the end of the command list.
This is required at the end of every list.
1 - - Stop Voice | Ceases all sample playback on the
specified voice.
2 - Sample number | Play Plays a sample on the specified voice at
Sample the default playback rate for that sample.
3 Volume adjust Volume Set Volume | Either set or adjust the volume of the
amount, signed specified voice.
(Optional)
4 Playback rate Sample number | Play Play a sample but at the playback rate
Sample @ specified in the command.
rate
5 New playback Volume (SFF = Modify Make a change to a voice’s settings,
rate no change) Channel change the playback rate and optionally
volume.
6 3sZ|z2z¢% Sample Number | Play Note Play sample on the voice using the
sg 3 % 3 5_ playback rate for the specified note
UE %.‘% = Er number. (See Note Lookup table)
7 Signed amount to adjust period by | Adjust Change the playback rate of the specified
playback voice.
rate
8 - - Reset Restore the volume of channel to the
Volume currently playing sample’s default volume.
9 Offset of sample Play from Play sample on voice but start the sample
offset playback at the given offset.
10 Destination note number Slide rate Slide from the current playback period to
(unsigned) | the period of the destination at the slide

rate given.

U-235 SoundEngine manual v0.16

Page 13

Note lookup table

The following table gives the relationship between a note number as used within the sound engine,

its matching Amiga Tracker module ‘period’ value and the actual sample playback frequency. The

playback frequency will vary very slightly due to rounding errors generated within the byte-skipping

code, but these should not be audible to the human ear.

30 302 11744.69
31 285 12445.25
32 269 13185.48
33 254 13964.15
34 240 14778.73
35 226 15694.23
36 214 16574.28
37 202 17558.89
38 190 18667.87
39 180 19704.97
40 170 20864.09
41 160 22168.09
42 151 23489.37
43 143 24803.46
44 135 26273.30
45 127 27928.31
46 120 29557.46
47 113 31388.45
48 107 33148.55
49 101 35117.77
50 95 37335.74
51 90 39409.94
52 85 41728.18
53 80 44336.19
54 76 46669.67
55 71 49956.27
56 67 52938.73
57 64 55420.23
58 60 59114.92
59 57 62226.23

Note Module Playback
Number Period Frequency (Hz)
0 1712 2071.78
1 1616 2194.86
2 1525 2325.83
3 1440 2463.12
4 1357 2613.78
5 1281 2768.85
6 1209 2933.74
7 1141 3108.58
8 1077 3293.31
9 1017 3487.61
10 961 3690.84
11 907 3910.58
12 856 4143.57
13 808 4389.72
14 762 4654.72
15 720 4926.24
16 678 523141
17 640 5542.02
18 604 5872.34
19 570 6222.62
20 538 6592.74
21 508 6982.08
22 480 7389.36
23 453 7829.79
24 428 8287.14
25 404 8779.44
26 381 9309.44
27 360 9852.49
28 339 10462.82
29 320 11084.05

U-235 SoundEngine manual v0.16

Page 14

Tracker Module Effects support

The following table details each of the sound tracker effects and their current level of support within the

sound engine.

Effect | Effect Name Status Notes
HEX
0 0 Arpeggio Un-Supported
1 1 Slide up Supported
2 2 Slide down Supported
3 3 Slide to note Partial support | Isn’t 100%
4 4 Vibrato Un-Supported
5 5 Slide to note & Volume | Un-Supported
slide
6 6 Vibrato & Volume slide | Un-Supported
7 7 Tremolo Un-Supported
9 9 Set sample offset Supported
10 A Volume Slide Supported
11 B Position Jump Supported
12 C Set Volume Supported
13 D Pattern Break Supported
140 | EO Set filter Un-Supported | This is likely to never be implemented
141 El Fine slide up Un-Supported
142 E2 Fine slide down Un-Supported
143 E3 Set glissando Un-Supported
144 E4 Set vibrato waveform Un-Supported
145 ES Set finetune value Un-Supported
146 E6 Loop Pattern Un-Supported
147 E7 Set Tremolo waveform Un-Supported
149 E9 Retrigger Sample Un-Supported
1410 | EA Fine volume slide up Un-Supported
1411 | EB Fine volume slide down | Un-Supported
1412 | EC Cut Sample Un-Supported
1413 | ED Delay sample Un-Supported
1414 | EE Delay pattern Un-Supported
1415 | EF Invert Loop Un-Supported
15 F Set speed Partial support | Speeds based on “ticks per division” (FOO to
F1F) are supported at this time, BPM speeds
are not (F20 and upwards).

NB: Unless otherwise stated “Un-Supported” effects will be implemented over time.

U-235 SoundEngine manual v0.16

Page 15

Credits

Code & Docs: LinkoVitch

Testing: sh3

Additional Testing: Cyrano Jones

Logo artwork: sh3

Proof Reading: Mug UK, GazTee, Cyrano Jones, sh3

Greetings and thanks
In no special order:

U-235
GazTee & sh3 (thanks guys, without you chaps this wouldn’t be possible -Link)

Reboot
Special hellos to Cyrano Jones, RemoWilliams, Sauron, MSG & ggn

Jagware
Special thanks to ZeroSquare for all the Jaguar help, mucho chocs coming your way
SCPCD, Matmook

AtariAge, Shamus, Tyr of the Arcana, OMF, GroovyBee, AtariOwl, StarCat, Thorn, BMX, Mr & Mrs Atari, Nick
Harlow, Stone, Partycle, Mug UK

U-235 SoundEngine manual v0.16
Page 16

